Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays.

نویسندگان

  • Cheng Hung Wang
  • Andrew See Weng Wong
  • Ghim Wei Ho
چکیده

For any future cost-effective applications of inorganic nanostructures, in particular, hybrid photovoltaic cells, it is essential that these inorganic nanomaterials be solution processable and selectively printable. This letter reports the selective growth of single-crystal ZnO nanostructures based on the microcontact printing of an inorganic nanocrystal seeding film. The pattern-transfer quality is dependent on the concentration of the inking solution. Variable yet controllable anisotropic growth of ZnO nanowires has been demonstrated on the transferred patterns of ZnO nanocrystal films. The patterning and growth of these highly ordered arrays of ZnO nanostructures employ a simple soft lithography technique and mild reaction conditions at low temperature and in the absence of harmful organic additives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable synthesis of branched ZnO/Si nanowire arrays with hierarchical structure

A rational approach for creating branched ZnO/Si nanowire arrays with hierarchical structure was developed based on a combination of three simple and cost-effective synthesis pathways. The crucial procedure included growth of crystalline Si nanowire arrays as backbones by chemical etching of Si substrates, deposition of ZnO thin film as a seed layer by magnetron sputtering, and fabrication of Z...

متن کامل

Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications

Vertically aligned single crystalline ZnO nanorod arrays, approximately 3 μm in length and 50-450 nm in diameter are grown by a simple solution approach on a Zn foil substrate. CdS and CdSe colloidal quantum dots are assembled onto ZnO nanorods array using water-soluble nanocrystals capped as-synthesized with a short-chain bifuncional linker thioglycolic acid. The solar cells co-sensitized with...

متن کامل

Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy lay...

متن کامل

Diameter-Controlled Vapor-Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays

A facile, template-free method was used to grow large areas of well-aligned ZnO nanowire arrays on amorphous SiO2 substrates. The arrays are composed of vertically aligned, single-crystalline, wurtzitic [001] ZnO nanowires whose diameters were easily controlled by growth temperature, adjusted by changing the distance between the substrate and the precursor material in the growth chamber. A vapo...

متن کامل

Fabrication and Optimization of Vertically Aligned ZnO Nanorod Array-Based UV Photodetectors via Selective Hydrothermal Synthesis

Vertically aligned ZnO nanorod array (NRA)-based ultraviolet (UV) photodetectors (PDs) were successfully fabricated and optimized via a facile hydrothermal process. Using a shadow mask technique, the thin ZnO seed layer was deposited between the patterned Au/Ti electrodes to bridge the electrodes. Thus, both the Au electrodes could be connected by the ZnO seed layer. As the sample was immersed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 23 24  شماره 

صفحات  -

تاریخ انتشار 2007